Al-Ir-Pd (Aluminum-Iridium-Palladium)

V. Raghavan

Recently, [2008Pav] determined the phase relationships in the Al-rich part of this ternary system and presented partial isothermal sections at 1100, 1000, 900, and 790 °C.

Binary Systems

The Al-Ir phase diagram has the following intermediate phases [2008Pav]: Ir₂Al₉ (Co₂Al₉-type monoclinic), $Ir_{13}Al_{45}$ (ϕ) (orthorhombic, space group *Pnma*), $Ir_{9}Al_{28}$ (χ) (hexagonal, space group P31c), IrAl₃ (D0₁₈, Na₃As-type hexagonal), IrAl_{2.7} (cubic, space group P23, denoted C), and IrAl (B2, CsCl-type cubic, denoted β). The Al-Pd phase diagram [2001Yur] shows the following intermediate phases: PdAl₄ (hexagonal, space group $P6_322$, denoted λ), PdAl₃ (denoted ε_6 , orthorhombic), ε_{28} (~PdAl₃, orthorhombic), Pd_8Al_{21} (Pt₈Al₂₁-type tetragonal), Pd_2Al_3 (denoted δ , D5₁₃, Ni₂Al₃-type hexagonal), PdAl (B2, CsCl-type cubic and two low-temperature forms: rhombohedral and B20type cubic), Pd₅Al₃ (Rh₅Ge₃-type orthorhombic), Pd₂Al (C23, Co₂Si-type orthorhombic), and Pd₅Al₂ (Pd₅Ga₂-type orthorhombic). In the Ir-Pd system [1991Tri], Ir and Pd form a continuous face centered cubic (fcc) solid solution. Below 1480 °C, a miscibility gap occurs in the solid state.

Ternary Isothermal Sections

[2008Pav] induction-melted Al-rich compositions under Ar atm and annealed them at 1100-790 °C for

Fig. 1 Al-Ir-Pd partial isothermal section at 1100 °C for Al-rich alloys [2008Pav]

24-2610 h, followed by water quenching. The phase equilibria were studied by x-ray powder diffraction and scanning/transmission electron microscopy. Compositions of co-existing phases were determined by energy dispersive x-ray analysis. Single phase compositions were determined by inductively-coupled plasma optical emission spectroscopy. Differential thermal analysis was carried out at heating/cooling rates of 10-50 °C per min. Partial isothermal sections constructed by [2008Pav] at 1100, 1000, 900, and 790 °C are redrawn in Fig. 1 to 4.

At 1100 °C (Fig. 1), all Al-Pd binary phases except PdAl (β) are molten. The maximum Al concentration PdAl was ~55 at.%. On the Al-Ir side, Ir_9Al_{28} (χ) dissolves up to 3.5 at.% Pd. IrAl_{2.7} (C) dissolves up to 14 at.% Pd. Two ternary phases C₂ and C₃ related to the C phase are present. C_2 (cubic) has a lattice parameter a = 1.5482 nm, which is about twice that of the C phase and has a compositional range around $\sim Al_{65}Pd_{13}Ir_{22}$. The C₂ composition of Al₆₅Pd_{11.5}Ir_{23.5} melts at ~1500 °C. C₃ is hexagonal and has a composition of Al₆₇Pd_{11.5}Ir_{21.5} at 1100 and 1000 °C and lattice parameters of a = 1.09135 nm and c =1.3418 nm. The full compositional ranges of C_2 and C_3 were not determined. The *ɛ*-related phases were denoted together as ε by [2008Pav]. This phase occurs in the ternary region between Al₇₃Pd₄Ir₂₃ and Al₇₃Pd_{11.5}Ir_{15.5}. The binary phase IrAl₃ was not observed in the ternary region. At 1000 °C (Fig. 2), the phase distribution is the same as at 1100 °C. The solubility of Pd in the χ phase is 5 at.%. The *\varepsilon*-range is now wider and extends from

Fig. 2 Al-Ir-Pd partial isothermal section at 1000 °C for Al-rich alloys [2008Pav]

Fig. 3 Al-Ir-Pd partial isothermal section at 900 °C for Al-rich alloys [2008Pav]

 $Al_{74}Pd_3Ir_{23}$ to $Al_{73}Pd_{15.5}Ir_{11.5}$. The solubility of Pd in the C phase goes up to 15 at.%. The homogeneity ranges of C₂ and C₃ phases extend up to 15.5 and 12 at.% Pd respectively.

At 900 °C (Fig. 3), in addition to the phases at 1100 and 1000 °C, Pd_2Al_3 (δ) forms and dissolves up to 2 at.% Ir. The binary phases IrAl₃ and ϕ were not observed in the ternary region. The solubility of Pd in the χ phase decreases to 3 at.%. The ε -range extends from Al_{74} $Pd_{3.5}Ir_{22.5}$ to $Al_{73}Pd_{18.5}Ir_{8.5}$. The solubility of Pd in the C phase is at least 13 at.%. At 790 °C (Fig. 4), the ε phase extends to the Al-Pd side. The binary phase PdAl₄ (λ) appears in the ternary region and has a homogeneity range

Fig. 4 Al-Ir-Pd partial isothermal section at 790 °C for Al-rich alloys [2008Pav]

from ${\sim}Al_{80}Pd_{4.5}Ir_{15.5}$ and ${\sim}Al_{80}Pd_{8.5}Ir_{11.5}.$ Ir_2Al_9 dissolves about 2 at.% Pd.

References

- 1991Tri: S.N. Tripathi, S.R. Bharadwaj, and M.S. Chandrasekharaih, The Ir-Pd (Iridium-Palladium) System, J. Phase Equilib., 1991, 12(5), p 603-605
- **2001Yur:** M. Yurechko, A. Fattah, T. Velikanova, and B. Grushko, A Contribution to the Al-Pd Phase Diagram, *J. Alloys Compd.*, 2001, **329**, p 173-181
- 2008Pav: D. Pavlyuchkov, B. Grushko, and T.Ya. Velikanova, An Investigation of the Al-Pd-Ir Phase Diagram between 50 and 100 at.% Al, J. Alloys Compd., 2008, 453, p 191-196